

Statistics

Class Notes

Inference about Two Means: Dependent Samples (Section 11.2)

Treat a group of patients with a new hair loss drug and measure the difference of hair density in each person (before and after). Does the new hair loss drug provide an increase in the *mean* hair density?

A University of Mississippi study tested the reaction times of people, comparing how long it took to press a button upon seeing a red screen versus seeing a blue screen. Is there a difference in *mean* reaction times?

#### Recall: Determining if Two Samples are Independent:

**Definition:** A sampling method is **independent** when an individual selected for one sample does *not* dictate which individual is to be in a second sample.



A sampling method is **dependent** when an individual selected to be in one sample is used to determine the individual in the second sample. Dependent samples are often referred to as **matched-pairs** samples. It is possible for an individual to be matched against him or herself.

The procedure we use is the same as we saw when we were analyzing a single mean, except that the differences are analyzed.

We will work with the means of matched-pair data.

We will have two (dependent) sets of data. For each matched-pair, we find the difference. The order in which we subtract is important and should *not* be done arbitrarily.

# We must verify that the following is true before continuing with hypothesis testing.

- · sample data come from simple random sampling or a matched-pairs experiment,
- · sample data are dependent (matched pairs),
- sample size is small relative to the population size  $(n \le 0.05N)$ , and
- the differences are normally distributed with no outliers, or the sample size is large  $(n \ge 30)$ .

Small departures from normality will *not* cause trouble. However, outliers are a bigger problem.

If outliers exist, do *not* use these procedures.

## Summary of the P-value Approach:

Step 1: Determine the null and alternative hypotheses. Again, the hypotheses can be structured in one of three ways:

1. Equal versus not equal hypothesis (two-tailed test)

 $H_0: \mu_d = 0$ 

 $H_1$ :  $\mu_d \neq 0$ 

denote the assumed population mean of the differences.

2. Equal versus less than (left-tailed test)

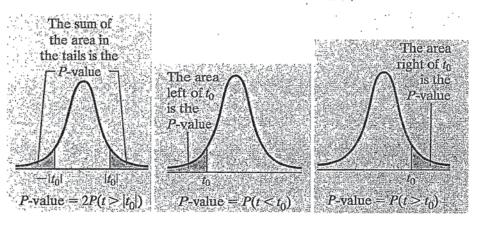
 $H_0: \mu_d = 0$ 

 $H_1: \mu_d < 0$ 

3. Equal versus greater than (right-tailed test)

 $H_0: \mu_d = 0$ 

 $H_1: \mu_d > 0$ 


We use  $d_a$  and  $s_a$  for the mean and standard deviation of the differenced data.

Step 2: Select a level of significance,  $\alpha$ , depending on the seriousness of making a Type I error.

Step 3: We could compute the test statistic 
$$t_0 = \frac{\overline{d} - 0}{\frac{s_d}{\sqrt{n}}} = \frac{\overline{d}}{\frac{s_d}{\sqrt{n}}}$$
 (using  $n - 1$  degrees of freedom)

and use Table VII to approximate the *P*-value. However, we will often use the calculators or StatCrunch to perform the hypothesis testing where this calculation will be done for us.

Step 4: If the P-value  $< \alpha$ , reject the null hypothesis. For an understanding of the P-values, we will look quickly at these pictures.



Step 5: State the conclusion.

## Alternatively, Steps 3 and 4 Using Classical Approach:

Step 3: We compute the test statistic  $t_0 = \frac{\overline{d} - 0}{\frac{S_d}{\sqrt{n}}} = \frac{\sqrt{\overline{d}}}{\frac{S_d}{\sqrt{n}}}$  which follows Student's t-distribution

with n-1 degrees of freedom. Use Table VII to determine the critical value according to the following pictures.

|                   | Two-Tailed                                         | Left-Tailed       | Right-Tailed                          | $\mathcal{I}$ | Some homework                |
|-------------------|----------------------------------------------------|-------------------|---------------------------------------|---------------|------------------------------|
| Critical          | $-t_{\frac{\alpha}{2}}$ and $t_{\frac{\alpha}{2}}$ | -t <sub>a</sub>   | tα                                    |               | problems will require the    |
| value<br>Critical | Critical                                           | w ciwanica.       |                                       |               | P-value approach while       |
| region /          | region                                             | ****              | J                                     |               | others will ask for critical |
|                   | $I(A \setminus A)$                                 | Critical          | Α                                     |               | values (classical            |
|                   | 1/11                                               | region            | Critical                              |               | approach).                   |
| \ .               | MN                                                 |                   | 1 K                                   |               |                              |
|                   | -1 <sub>a/2</sub> 1 <sub>a/2</sub>                 | / -t <sub>a</sub> | · · · · · · · · · · · · · · · · · · · |               |                              |

Step 4: Compare the critical value to the test statistic. If the test statistic is in the shaded region shown above for the appropriate test, we reject the null hypothesis.

Recall the instructions to perform a T-Test for the calculator and StatCrunch. We will modify them slightly to accommodate the differenced data.

# Instructions for TI Calculators (differs from the book):

- 1. If needed, enter the differences in L1. Just enter the differences (with minus signs) and the calculator will do the math as you go.
- 2. Press STAT. Arrow over the TESTS. Select 2: T-Test.
- 3. Select **Data** at the top. Press **ENTER**. You'll enter 0 for  $\mu_{\theta}$ , **L1** for **List** and 1 for **Freq**. The final line will give you a spot to tell it you want a two-tailed, left-tailed, or right-tailed test.

Alternatively, before step 2 but after entering the differences in L1, run STAT > CALC > 1: 1-Var Stats to find the mean and standard deviation of the differences. Then, select STAT > TESTS > 2: T-Test but this time, select Stats at the top. It should fill in the  $\bar{x}$  and Sx lines for you. You'll possibly need to enter 0 for  $\mu_{\theta}$  and the sample size as well as select the correct test (two-tailed, left-tailed, or right-tailed).

4. Finally, select Calculate and press ENTER. The calculator will output a t-value (the test statistic in step 3 on the previous page), the P-value we need (shown as p), the sample mean and standard deviation, as well as the sample size, presumably to check.

#### Instructions for StatCrunch:

- 1. If you have raw data, enter it in the spreadsheet. Of course, coming from MSL homework, click on the overlapping rectangles next to the data, select Open in StatCrunch, and poof!
- 2. Select Stat > T Stats > Paired.
- 3. Tell it which columns contain the two samples' data. They will be called **Sample 1** and **Sample 2**. Be aware that  $\mu_D = \mu_1 \mu_2$  and the order is important. Choose the hypothesis test radio button. Enter the value of the mean stated in the null hypothesis (which is 0 in this section) and choose the direction of the alternative hypothesis from the pull-down menu. You can also tell it you want a **QQPlot** (normal probability plot) and a **boxplot**. Click **Compute!**
- 4. StatCrunch will output the test statistic  $t_0$  (T-Stat) and the P-value. Check the QQPlot to see if it looks linear and the boxplot to see if there are no outliers.

expl 1: A University of Mississippi study tested the mean reaction times of people, comparing how long it took to press a button upon seeing a red screen versus seeing a blue screen. The reaction times were recorded in seconds. Here is the data for a sample of 6 people.

|             |       |       |       |       |       | 11    |  |
|-------------|-------|-------|-------|-------|-------|-------|--|
| Participant | 1     | 2     | 3     | 4     | 5     | 6     |  |
| Blue        | 0.582 | 0.481 | 0.841 | 0,267 | 0.685 | 0.450 |  |
| Red         | 0.408 | 0.407 | 0.542 | 0.402 | 0.456 | 0.533 |  |

(a.) Why are these matched-pair data? Each person is matched with themselves, once doing the time test with a red screen and once doing it with a blue screen.

b.) The study randomly chose which color a person would be given first. Why should we do that?

We need to avoid non-sampling bias related to order. A person could have a lower reaction time due to exhaustion or muybe a lower time due to being warmed up.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | expirit (continued):                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c.) A normal probability plot (QQPlot in StatCrunch) and boxplot of the data indicate the                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | differences are approximately normal with no outliers. Is there a difference in reaction times                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | between blue and red screens? Test the hypothesis at the $\alpha = 0.01$ significance level.                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | observed of the tree solutions of the tree tree tree tree tree tree tree                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ho: $\mu_D = 0$ Hi: $\mu_D \neq 0$ We will use the calculator:                                                                                                                                                                                  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | test statistic 2 1.31  Pralue 2 0,247  Calculator output                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 = 0.01/2 = 0.005 (df=5) -> Table III  aveas (1.31 + reject) +o find chit values                                                                                                                                                             |
| These of<br>Logett<br>are of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | areas er (1.31 of reject) to find crit values                                                                                                                                                                                                   |
| ares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fill in the various information. 4,032                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The null hypothesis is MD = 0 with an alternative hypothesis of MD ≠ 0.                                                                                                                                                                         |
| de de la lación de la | The test statistic $t_0$ is 1.31 with $N-1=5$ degrees of freedom.                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The critical value(s) is/are 4.032, -4.032. Table III                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The <i>P</i> -value is 0.247. (Using Table VII, we only get a range of values for the <i>P</i> -value. Technology will outright give us its value.)                                                                                             |
| ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,20 4 Pralue < 6,30                                                                                                                                                                                                                            |
| , /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | We reject do not reject (select one) the null hypothesis. There is (is not (select one) sufficient evidence at the 0.01 significance level to conclude that there is a difference in the reaction times when blue versus red screens are shown. |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | when orde versus red screens are shown.                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 |

| Confidence Intervals:                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A $(1-\alpha) \cdot 100\%$ confidence interval for $\mu_d$ is given by                                                                        | margin PED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lower bound: $\overline{d} = t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}$ and Upper bound: $\overline{d} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$ | margh (E) error (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| where $t_{\alpha/2}$ is the critical value with $n-1$ degrees of freedom.                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| expl 2: Construct a 99% confidence interval for the differenced dather answer. Does it match with the result from the hypothesis test.        | A CONTRACTOR AND A CONT |
| (df=5) ta/2 = to.01/2 = to.005 = 4                                                                                                            | 1.032 (just like expl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| from calculator, d = 0,093, Sd                                                                                                                | 20,1737 (1-Varstats)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| So, E = ta/2'Sd = 4.032 + 0                                                                                                                   | 6 7 7 0, 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 99% CI: d + E = 0.093 + 0.286-                                                                                                                | > (-0.193,-0.379)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| we are 99% confided that the mean di                                                                                                          | ference between 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| action times for blue vs. red screens is<br>Instructions for Calculator: and 0.379. The                                                       | nis containing O does align                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Do the same as for hypothesis tests, except select STAT > Tests > confidence level.                                                           | > 8: TInterval. Tell it the with the fact we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                               | did not reject the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Instructions for StatCrunch:                                                                                                                  | null hap in expl. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Again, the setup is the same but we choose the Confidence interval radio button. Enter the level of confidence. Click **Compute!** 

If you like to do stuff by hand, Table VII is provided here.

It is the same as before. Enter data and select Stat > T Stats > Paired.

(995 bottom) arge of p-values,

For range of p-values,

Avid that 1476

1.156 L 1.31 L 1.476

So, 0.10 correspond 20

So, 0.10 correspond 20 Area in fight 1313. t-Distribution Area in Right Tall Degrees of 0.250.20 Freedom 0.15 0.10 0.05 0.0250.020.010.005 0.0025 0.001 0.0005LUUO 1376 1.967 3.078 fi, 314 12,706 15,894 31,821 63,657 122321 313,309 636,619 0.8161.186 2.921) 2.353 1.051 4,849 3,482 6.965 1,816 4,303 9,925 14,089 31,599 12,924 22,327 3 0.7650.978 1.2501638 3.182 4.541 5.841 7453 10.215 0.741 0.9411.1911 1533 2,132 2.7762,999 3.347 4.004 5,598 7.173 8,610 0.727 2,571 0.9217 1.156 1,476 2.015 7.757 3,365 4.032 4,773 6.869 5.893 ń 1,440 31.718 0.906 1.134 1.943 2,447 2.612 3.143 2.998 3.707 4317 5.70% 5.999 0.896 0.711 1.1191.415 1,895 2.363 2517 3.499 4,029 4.785 5.408 8 1.397 0.706 0.889 1103 1860 2.306 2,449 2,896 3.355 EE8.E 4.501 5.0410.703D.883 1100 1383 18332.262 2.398 2.821 3.250 3.690 4.297 4.781 10 0.700 0.879 1,1193 1,372 1.812 2.228 2,359 2,764 3\_169 3.581 4.144 4.587 11 0.697 0.876 1088 1.563 1.795 2,718 2,681 2.2012.328 3.106 3.497 4,437 4.025 12 0.6952.503 0.879L083 1.356 1782 2.179 4318 3.055 3,428 3.930 13 0.6942,282 2,264 0.8701.0792.160 1350 3.372 1771 2.650 3.012 3.852 4.221 14 0.692 0.868 1:0761:345 1.761 2.145 3,326 2.624 2.977 3.787 4.140 15 0.691 0.866 1.074 1.341 1.7532.131 2.249 2.602 2,947 3.285 3,733 4,073 16 0.690 0.865 1.0711.7462.1202.235 2.224 1.337 2553 2,921 3.252 3,585 4.015 17 0.689 0.8531.069 2.110 1,333 1,740 2.567 2.698 3.222 3,465 3,646 18 0.862 0.6881.062 2.192 2.878 1.330 1.734 2.1111 2.214 3.197 3.610 3.922 19 0.688 0.861 1.066 1,328 1.729 2.093 2.2052539 2.861 3,174 3,579 3.883 20 (),560) 0.687 1.0641,325 1,725 Z.U86 2,197 2,528 2.845 3:153 3.552 3.850 21 22 (1,656 0.859 1,063 1.323 2.080 1:721 2,1,89 3,135 3,139 2,518 2,531 3.527 3.819 (1686 0.858 1.321 1,1951 1717 2.074 2.183 2.508 2319 3.505 3.792 23 0.858 (1685 LIKO 1319 1714 2069 2.177 2500 LIM 2 207 3,485 3,768 24 0.6850.8571059 1318 1.711 2.064 2.172 2.492 2,797 1001 3,467 3.745 25 0.356 0.684 1058 13161708 2.0602.1672,485 2.787 3.078 3,450 3:725 26 0.684 0.8561058 1315 1.705 2.056 2.162 2,479 2.779 3.007 3,435 3.707 27 28 0.684 0.855 14157 1314 1703 2.052 2.771 2.763 2.158 2.473 3.057 3.421 3,650 0.683 0.855 L056 1313 1701 2.048 2.154 2.467 3.047 SOLE 3.674 29 0.683 0.854 14055 1699 1311 2.0452.1502.462 2.756 3.038 3.396 3.659 30 0.683 0.85414055 1310 1697 2.042 2.147 2.457 2,750 3.030 3.385 3.646 31 0,682 0.853 1054 1309 1,696 2.040 2.144 2.453 2.744 3.022 3.375 3.633 32 0.652 0,853 1.054 1309 1.694 Z.U37 2.738 2,141 2,449 3.015 3.365 3.622 0.682 3,3 0.853 1.053 1508 1.692 2,035 2.138 2.445 2.733 3,356 3.008 3.611. 14 0.852 0,682 1.032 1307 1.6912.136 2.441 2.728 2.032 3.002 3.348 3.601 35 0.682 0.852 1.052 1.306 1690 2.0302,133 2,438 2:724 **I.996** 3.340 3/591 36 0.681 0.852 1,052 1,306 1.688 2:131 2:129 2,028 2.434 2.719 25%) 3.333 3.582 1305 37 (1.681 0.851 1.051 1.687 2.0263.326 2.431 2715 2.985 7-574 18 O.FS1 0.681 14151 1,304 1.685 2,024 2.127 2.429 2,712 2.980 3,319 3.566 39 0.6810.8511.050 1304 1.685 2.023 2.125 2,426 2.708 2.976 3.313 3.358 40 0.681 0.851 1.0501303 1.684 2,123 2,021 2.423 2.704 2.971 3.307 3.551 SO 0.679 0.849 L047 1.299 L676 2.009 2,109 2.403 2,678 2.937 3,261 3,4% Ø 0.6790.848 1045 1671 1296 2.099 2.390 2.0002.6602.915 3 232 3,460 70 0.6780.8471.044 1.294 2.381 2.374 1.6671,994 2.093 2.648 2.639 2.8993.211 3,435 80 0.6780.8461043 1,292 1,990 16642.083 2.887 3.195 3.41ú 90 1291 0.677 0.8461042 2.368 1662 1.987 2.084 2,878 2.632 EBLE 3.402 100 0.845 0.677 1042 1290 1,660 1.984 2.626 2.051 2:364 2,871 3.174 3.390 1000 0.675 0.8421037 1.252 1.646 1,962 2.0562.330 2.591 2.813 3.098 32(H) 0.8420.674 1,036 1.282 1.645 1.9602.0542.576 2,326 2.807 3,050 3,291